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Theory of total magnetic susceptibility of interacting 
electrons in metals 
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Abstract. We derive expressions for the orbital k0), spin ks) and spin-orbit kso) con. 
tributions to the total magnetic susceptibility k) ofelectrons in metals, which includes the 
effects of lattice potential and exchange-correlation. by using a pseudopotential formalism 
and degenerate perturbation theory. We have calculated x for alkali metals as well as for Zn 
and Cd. Our results agree well with the experimental results. The effects of spin-orbit 
interaction on the magnetic susceptibility have been investigated. The spin-orbit con- 
tribution to x has been found to be ver) small for alkali metals but gives a significant 
diamagnetic contribution in the case of Zn and Cd, as predicted earlier. 

1. Introduction 

The many-body theory of magnetic susceptibility of solids, in which the effects of the 
lattice potential, electron-electron interactions and electron-phonon interactions are 
included, is one of the basic problems of solid-state physics that has not yet been 
satisfactorily resolved. Although the many-body effectson the orbital susceptibility ko) 
of metals is negligible (Phillipas and McClure 1972). it is well known that the spin 
susceptibility ks) of metals is very sensitive to exchang-orrelation (xc) effects and 
the in5uence of electron-phononinteractions on,ysis small. Further, it had been hitherto 
assumed that the effects of spin-orbit coupling can be accounted for in the diamagnetic 
susceptibility h0) through modification of the Bloch functions and in the spin sus- 
ceptibility ks) by replacing the free-electrang-factor by the effectiveg-factor. However, 
it has been shown (Misra and Kleinman 1972) that there is an additional contribution to 
the magnetic susceptibility from the effects of spin-rbit coupling kso) on the orbital 
motion of Bloch electrons, whose contribution is of the same order of magnitude as ,yo 
for metals like Zn and Cd and some semiconductors (Misra ef a1 1984) even in the 
absence of xc effects. 

The comparison of suitable theoretical results with accurate measurements (Knecht 
1975) of ,ys of alkali metals using the de Haas-van Alphen effect allows for a stringent 
test of the role of electron-electron interactions in the properties of metals. In order to 
explain these measurements, any theory of xr must simultaneously incorporate the 
lattice potential and the xc effects including the core electrons. However, owing to the 
enormous complexity of the problem, until recently there have been two different 
approaches in deriving an expression for xS.  In one method, the Bloch picture of the 
electron is adopted in which the electron-electron interaction terms are not considered 
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insofar as they can be approximated to aone-electron bandcalculation. In thealternative 
method the many-body effects on xs of an electron gas are first derived and the ,ys of 
electrons in solids is calculated essentially using an effective-mass model. Further, in 
deriving a many-body theory of xs,  the orbital component of the Hamiltonian is not 
usually included, thereby neglecting the effectsofspin-rbit interaction. The spin-orbit 
interaction is subsequently introduced in an ad hocmanner by replacing theg-factor by 
the effective g-factor. 

An expression for xs using the Bloch picture of electrons was first derivcd by Abe 
(1963) in a nearly free-electron approximation. However. his results for xs did not 
include the important contribution due to exchange enhancement. Moreover, its appli- 
cation is limited only to monovalent metals, since his expression for xs diverges when 
the Fermi surface touches the Brillouin zone boundary. Sampson and Seitz (1940) first 
calculated xs including xc effects by assuming that the shift in the ground-state energy 
from polarization can be obtained from an independent variation of the populations of 
the up and down spins. Pines and Nozieres (1966) carried out a calculation similar to 
that of Sampson and Seitz (1940) but their results differ considerably from the results of 
Sampson and Seitz because of the use of Bohm-Pines theory for the correlation energy. 
Brueckner and Sawada (1958) have derived an expression for xs of an electron gas at 
high density using the exact theory of Gell-Mann and Brueckner (1957). Silverstein 
(1963) calculated xs by a method similar to that of Brueckner and Sawada (1958) 
with the addition of a momentum-transfer interpolation procedure designed to obtain 
relevant information in the region of metallic densities. In this procedure, the band 
effectscan be takenintoaccount by theintroductionof theeffectivemassinto the kinetic 
energy term. There have been several attempts (Lobo etal 1969, Singwi etal 1970, Singh 
and Pathak 1972. Hasegawa and Shimuzu 1973, Rajagopal et al1973) to calculate the 
frequency- and wavevector-dependent spin-density response function, which in the 
static and long-wavelength limit gives the usual static spin susceptibility. These theories 
are mostly based on the generalized random-phase approximation and are direct gen- 
eralizations of theories of the dielectric function. Vashistha and Singwi (1973) have 
generalized their theory of the dielectric function to include spin fluctuations by treating 
the electron liquid as a two-component system. Hamann and Overhauser (1966) have 
calculated the wavevector-dependent spin susceptibility, taking the dynamically 
screened electron interaction into account. Kasowski (1969) has estimated the tem- 
perature-dependent spin susceptibility in a pseudopotential formalism. Dupree and 
Geldart (1971) have evaluated the spin susceptibility by expanding the propagators in 
the expression for the dynamic spin susceptibility of an interacting electron gas in 
terms of the one-electron self-energies and propagators for non-interacting electrons. 
Pizzimenti eta1 (1971) have calculated the spin susceptibility of metals in the framework 
of the Landau (1956) theory on the basis of the treatment of electron correlation 
developed by Singwi et af (1970). 

Yafet (1973) has calculated the spin susceptibility for a two-band model with 6- 
function interactions between conduction electrons using a random-phase approxi- 
mation. lsihara and Kojima (1975) have evaluated both the orbital and spin sus- 
ceptibilities of an electron fluid by considering the free electrons, first- and second-order 
exchange and ring diagrams. It may be noted that most ofthese theories have considered 
the metal as a homogeneous electron gas, which 'represents only a mathematical 
model. In a real metal the background potential and the electron density are far from 
uniform. Kohn and Sham (1965) have used the density-functional formalism (Hohen- 
berg and Kohn 1964) to derive an expression for the spin susceptibility valid for slowly 
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varying density. They have used the fact that all ground-state properties are functionals 
of the electron density. The Hohenberg-Kohn-Sham theory of an inhomogeneous 
electron gas has been generalized (Stoddart and March 1971, Von Barth and Hedin 
1972, Rajagopal and Callaway 1973) to include the spin-dependent interaction. Vosko 
and Perdew (1975) have derived a theory of xs of metallic electrons based on the 
variational principle within the density-functional formalism. The variational expression 
allowsone to treat simultaneously the band and exchangei-orrelation effects among the 
conduction electrons and also includes the effect of the core electrons on the lattice. 
Using this theory, Vosko et a1 (1975) have calculated xs for alkali metals, and there is 
good agreement with the experimental results. Using the Vosko-Perdew theory, Janak 
(1977) calculated xs of a number of metals (including the transition metals) to study the 
enhancement of response that leads to ferromagnetic instability. His results agree with 
results of Gunnarson (1976) but differ from those of Vosko er ~l (1975) because of the 
use of a different approximation for the exchange-correlation functional and the use of 
different lattice parameters. It may be noted that the results of these calculations are 
sensitive to the approximation for theexchangecorrelation functional. Moreover, since 
only the spin part of the Hamiltonian is considered, the spin-orbit contributions are 
completely ignored in these theories. 

Misra and Kleinman (1971, 1972) have derived an expression for the magnetic 
susceptibility of Bloch electrons, which can be written in the form 

x = xo +xs + xso (1.1) 
where xo is the expression for diamagnetic susceptibility derived by Misra and Roth 
(1969) by considering the orbital motion of Bloch electrons, xS is the effective Pauli spin 
susceptibility, which is obtained by replacing the free-electron g-factor in the spin 
susceptibility by theeffectiveg-factor (Yafet 1973). andXso is the additionalcontribution 
of the spin-orbit interaction to the susceptibility. However, they have adopted the 
Bloch picture of electrons in solids and thus have not considered the electron-electron 
interaction terms except insofar as they can be approximated in a one-band calculation. 
It has been observed by Misra and Kleinman that, although the additional spin-orbit 
contribution to the susceptibility may contain contributions of either sign, it should be 
considered a spin-orbit correction to ,yo and distinguished from the spin-orbit con- 
tribution to the effective g-factor. This is because of the fact that there are two types of 
contribution to the magnetic energy of a one-electron eigenstate, terms linear in B (the 
applied magnetic field) that split the spin degeneracy and terms quadratic in B that do 
not. (Both terms, of course, contribute quadratically to the free energy.) The linear 
terms are all included in the g-factor and are always paramagnetic, independent of the 
sign of the g-factor, i.e. independent of the sign of the splitting of the spin degeneracy. 
The quadratic terms that arise from a perturbation of the electron wavefunctions by the 
magnetic field are generally diamagnetic and are responsible for bothx, andxso. 

Recently one of us has formulated a theory (Misra er QI 1982) of the total magnetic 
susceptibility of solids in which the effectsof both lattice potential and electron-electron 
interactions have been included. We have constructed in k-space, using the Bloch 
representation, the effective one-particle Hamiltonian and equation of motion of the 
Green function in the presence of a magnetic field. We have used a finite-temperature 
Green function formulation where the thermodynamic potential S2 is expressed in terms 
of the exact one-particle propagator G. We have derived general expressions for the 
orbital (,yo), spin kS) and spin-orbit ks0) contributions to the total magnetic sus- 
ceptibility x, which includes many-body effects. 
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In this paper, we derive tractable expressions for ,yo, xs (including spin-orbit inter- 
actions) and xso of metals from the general results of Misra et nl(1982) through the use 
of a pseudopotential formalism (Harrison 1966) and doubly degenerate perturbation 
theory. The justification for the use of the pseudopotential formalism has been given by 
Misra and Roth (1969) and Phillipas and McClure (1972). 

The organization of the paper isasfollows. In section 2, we briefly discuss the general 
expressions for ,yo, xs and xso derived by Misra er a1 (1982). In section 3, we formulate 
a pseudopotential theory appropriate for metals to obtain tractable expressions for ,yo, 
,ysandxsosuch that calculationscan beeasily made. Insection 4 wecalculatexo,xsand 
xso of the alkali metals and the divalent FicP metals, Zn and Cd. Finally we compare our 
results with experimental results as well as the results of the spin-density functional 
formalism. 

2. General expressions for ,yo, ,ys and ,yso 

Misra et a1 (1982) have derived an expression for the total magnetic susceptibility or) of 
interacting electrons in solids using a finite-temperature Green function formalism 
where the thermodynamic potential for an interacting electron system in the presence 
of a periodic potential. spin-orbit interaction and external magnetic field is expressed 
in terms of an exact one-particle propagator C. We have constructed in k-space, using 
the Bloch representation, the equation of motion of the Green function in the presence 
of the magnetic field and evaluated x. In this theory x has been separated into three 
components: 

x = xo -+ xs + xso (2.1) 

wherexo is theorbital susceptibility,~, is thespin susceptibilityand,ysois the additional 
contribution due to spin-orbit interaction. The expressions forXo,xsandxso (equations 
(3.42). (3.46) and (3.44) of Misra era1 (1982)) are 

(2.2) 



Here the g-matrix g;,(k) and the other factors have been defined as follows: 

(2 .4)  

X" = V;V:Co(k) (2.6) 

y ~ y  = ax:'."/akP (2 .7)  
F" = U" + (2/gpO)2'.' (2.8) 
J' = U" + ( l /gpu)Z' ," (2.9)  

m(k, E l )  = (h/m)(p+ hk) + ( h 2 / 4 m c ) a  x VV + Vkxo(k,  E l )  (2.10) 

z / h  is the velocity operator 

Z is the exact self-energy operator whose matrix elements are 

x n k p , m k p , ( k  B ,  h) = 1 drdr '  V&(r)x(r, r ' ,B ,  h ) V m k p - ( r ' )  (2.11) 

and the field-dependent self-energy has been expanded as 

X ( k , B ,  E l )  = Z o ( k ,  ~ , ) + B P ~ ' . r ( k , S ~ ) + B P B " x ' . P ( k , 5 , )  (2.12) 

where &is the complex energy given by 

5, = (21 + l)ai/P + p .  (2.13) 

Also, here a i s the  Pauli spin matrix; pc,istheBohr magneton;.uk thechemical potential; 
g is the free-electron g-factor; Anpmp. is the matrix element of A between VnkP(r) and 
qmkp;(r'), the two-component Bloch functions, which are eigenfunctions of the Ham- 
iltonian in the absence of a magnetic field; n is the band index; k is the reduced 
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wavevector; p is the spin index; E,, = E, - E,; is the antisymmetric tensor of third 
rank; andf(E,) is the Fermi function. Expanding G(k, E , ) ,  using equation (2.12) and 
making an average exchange enhancement ansatz we obtain 

(2.14) 

K C Dm et a/ 

%"p, = {"/2[1 - ~ " ~ ~ ) l l P o s ~ n a L " p *  
where 

(2.15) 

and U,, ( k ,  k ' )  is the matrix element of the effective electron-electron potential in the 
staticscreening approximation. Substitutingequation (2.14) in equation (2.3), weobtain 

(2.16) 

where 

X%."(k) = - fr:  c g ~ " ( k ) o ~ p " P , g ~ " : , ~ ) ~ ~ P . , p f ' ( E , ) .  (2.17) 

Further, using equations (2.14) and (2.15) in equation (2.4) the expression forXso can 
be simplified and we obtain 

PP' 

(2.18) 

We note that the intuitive result of equation (2.16). which gives rise to the well known 
Stoner enhancement (White 1970). is essentially equivalent to the usual expression for 
the exchange-enhanced spin susceptibility but with the free-electron g-factor replaced 
by the effective g-matrix. We further note that in the above derivation the coupling 
between 2$'mp, for different occupied bands has been neglected. 

3. Pseudopotential formulation 

In order to calculate xo, xs and xs0 for metals, we evaluate the Bloch functions by 
considering the sum of the lattice potential and the field-independent part of the self- 
energy as non-local pseudopotential. The justification of the pseudopotential for- 
mulation has been given by Misra and Roth (1969) and Phillipas and McClure (1972). 
We retain the operator nature of W(r) ,  which does not cause any difficulty since we shall 
be interested in the matrix elements between states that lie on the Fermi surface. 
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We consider the case of a general point on the Bragg reflection plane, so that the 
unperturbed eigenvalue is doubly degenerate if we ignore spin. With the inclusion of 
spin, each level becomes doubly degenerate, so that we consider two doubly degenerate 
bands at a general point of the Bragg reflection plane. We write the Hamiltonian as 

H = p 2 / 2 m  + W + Wso (3.1) 

where we have separated the general pseudopotential (Das and Misra 1971) into two 
parts: W ,  the spin-independent part, which is the pseudopotential used by Misra and 
Roth (1969), and Wso, the pseudopotential for spin-orbit interaction. Using standard 
techniques of degenerate perturbation theory, we obtain the energy values as 

V2 W,lk + G )  

E ]  = h2k2/2m c2 = h2(k + G)'/2m W G  = (k + Glwlk) 

(3.4) 

D = (h/4mc2)U(lGl)S(G) - A,(m/fi)S(G) - Ad(m/fi)S(G)(k2 + k . G ) .  

Here S(G) is the structure factor, and the spin-orbit parameters A ,  and A,, are positive 
constants that account for the contribution of the core p states and d states respectively. 

The matrix elements of rnPmp. and unpmp. have been evaluated by using Bloch 
functions obtained by us. However, in order to calculate XO, ,ys and XSO,  we have to 
calculate the chemical potential and the exchange cnhancement factor in the pseudo- 
potential formulation. We start with the familiar expression 

i l d 3 k f ( E )  4n 3 = N (3.5) 

where E is the exact energy given in equation (3.2),f(E) is the Fermi function and N is 
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the total number ofelectronsperunit volume. We use cylindricalcoordinatestoevaluate 
equation (3.5). We choose G parallel to the z axis inside the integration and we can write 

where 

k', = k: + k; and q 2  = k ,  + G/2. 

Integrating by parts and using the fact that at zero temperature the derivative of the 
Fermi function,f'(E) = - 6 ( E  - E ) ,  we obtain 

1 -1 dq, I k i 6 ( E  - 5) dE = N 4x2 (3.7) 

where 5 is the chemical potential. The integration over Ecauses k ;  to be replaced by 

k i  = - 4: + 6G2 + (p - l)Gz/4 + G(rxq: + /3GZ)'" (3.8) 
which is obtained by solving E - E = 0. We obtain from equations (3.7) and (3.8) 

dq, [ -4: + 6G2 + (p - 1)G2/4 + G(ffq: + PG2)'fl] = N .  (3.9) 4x2 

In the above, the dimensionless quantities a, P ,  6, t2 andp are defined by 

6 = 2D2/h2 f f = 1 - 2 6  p = 1 2 + 6 * + ( p - 1 ) 6 / 2  
(3.10) 

tZ = 4m2W&/AJG4 and p = 8mE/h2G2. 

Introducing the dimensionless variable 

Y = (2 /G)qz  
we can write equation (3.9) as 

(3.11) 

G' Y +  -1 dy[ - y.' + p  + 46 - 1 + 2((uy2 + 4p)'12] = N .  (3.12) 3%2 

Here yt and y- are the upper and lower limits of y obtained by solving E = E for 
k, = 0. The solutions can be shown to be 

Y -  

We now integrate equation(3.12) to obtain (for bothp > 1 andp < 1) 

z t  - 26 + ff'!2y+ 
2- - 26 + ff' /Zy- 

+ ( y t z +  

(3.13) 

(3.14) 

where 



Total magnetic susceptibility of interacfing electrons in metals 

z+  = y. (1 + 4t2/yZ)@. 

1315 

(3.15) 

It is easy to show the free-electron result that 

N = $(G3/3h2)p;/' 

where 

p o  = 8mEo/fiZGZ 

and E o  is the Fermi energy. We obtain from equations (3.14) and (3.16) 

(3.16) 

(3.17) 

We note that in the absence of spin-orbit interaction, our expression forp, in equation 
(3.18) reduces to the corresponding expression derived by Misra et a1 (1971). We can 
write the right-hand side of equation (3.18) as F ( p )  and write it in the form 

P =Po - -PI. (3.19) 

Thus we can calculatep by a reiteration process and hence the chemical potential E can 
be evaluated. 

To calculate xo, xs and xso. we have first evaluated the matrix elements of zx, xy, 
n", ux, uY and uz between the Bloch functions VI  l y I  L ,  tp2, and V21.  We have used 
cylindrical coordinates and integrated the resulting expression by using the techniques 
outlined earlier for the evaluation of the chemical potential. After considerable algebra, 
we finally obtain 

xo = xo* (1 + 08) 
c 

(3.20) 

and 

xso = 08'". 
c 

(3.22) 

In the above xi is the free-electron Landau diamagnetic susceptibility, x,* is the 
exchange-enhanced spin susceptibility for free electrons (i.e. in the absence of band 
effects),andDg, DgandDiO areG-dependent termsinxo,XsandXsothataccountfor 
the band effects and spin-orbit coupling. Dg,  D$ and D&O are given by 

(3.23) 
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g’D’(G - G Z ) * ( y  - 1)’ 
16h’GY 

mgDWcG’, 
2 h 3 ~ 3 ~  

+ - 

and 

. -  

D4 D J  D’ 
(G-G,)y+ - ( G  - GJ2 +7 G2rZ + T G 5 t z )  $1 D‘ 

2hJ 4hZ h - 4h- 
-- 

(3.25) 

where 

Y = y 2  + 4t’ + (16D’/G2)k~ (3.26) 

fi is the value of k i  obtained by solving the  equation E. - E = 0, i.e. 

f b = f C 2 [ ( p  - 1) - y’ + 46 + ~ ( C Y Y ’  + 4p)’/’] (3.27) 

and aG is the exchange enhancement factor obtained by one of us (Misra and Misra 
1982). 

We note that in deriving the expression for Ds, we have not considered the many- 
body effects on the orbital susceptibility, as has been shown by Phillipas and McClure 
(1972)andMisraetnl(1982) thatsucheffectsonx~areverysmall formetals. We further 
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note that ifspin-orbit interactionisalso neglected, thenour expression for 0 8  (equation 
(3.23)) exactly reduces to the corresponding expression obtained by Misra et a1 (1971). 
The last term in equation (3.23) is a correction term due to the inclusion of many Bragg 
reflections. 

It is easy to see that in the absence of many-body effects (ac = 0) and spin-orbit 
effects (D = 0), our expression for xS reduces to 

1 
xs = XP (1 + 4k,z  (Vi - Y-)G - 1) (3.28) 

where xp is the Pauli susceptibility of free electrons. 
If we substitute the values of y+ and y- from equation (3.13). and expand the terms 

to  second order in Wc, which is equivalent to non-degenerate perturbation theory, we 
obtain 

(3.29) 

We note that Abe (1963) and Glasser (1964) have derived exactly the same expression 
for the paramagnetic susceptibility in the nearly free-electron approximation. Thus, 
their result for xs is equivalent to our result using non-degenerate perturbation theory 
and neglecting both spin-orbit and exchange-correlation effects, However, it should be 
noted that the use of non-degenerate perturbation theory does not yield correct results 
for the magnetic susceptibility even for simple metals like lithium (Misra and Roth 1969). 

4. Method of calculation 

The alkali metals crystallize in the BCC structure with two atoms per cubic unit cell. The 
reciprocal lattice vector G and the structure factor for a BCC lattice are given by 

G = (2n/a)[(h + r)T+ ( h  + k ) j +  ( k  + $1 

S(G) =&(I + e- inh(k+k+l)  ) 

(4.1) 
and 

(4.2) 

where :,;and k are unit vectors alongx, y and z directions, respectively. 

edges 
Zn and Cd are divalent HCP metals with the lattice described by a unit cell having 

a ,  = & a i -  hV5.J: a2 = $ a i +  4 V T a j  a )  = ck. (4.3) 

G = (zn/a)[(h + k ) i  + $d5(k  - h ) j  + ( a / c ) k ]  
S(G) = cos[&n(2h + 4k + 31)]. 

The unit cell contains two atoms, one at the origin and the other a t  $ai + id/? a; + hck. 
The reciprocal lattice vector G and the structure factor S(G) are given by 

(4.4) 

(4.5) 
Making use of the lattice parameters, we have calculated the lattice vectors G and 

the structure factor S(G) for each G by a computer program. We have used the zero- 
temperature Fermi-level pseudopotential form factors (k,  + GI wlkJ of Animalu and 
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Table 1. Orbital k0), spin h5) and spin-orbit kro) contributions to magnetic susceptibility 
01) (in cgs "01 units). 

Mrfal xa X S  XSO x = xo + x s +  xso 

Li -0.1023' 1.9849' -3.5454 X 1.88259' 

Na -0.2072' 1.0364' -2.8634 X lo-*' 0.82891' 
-O.2WlD 1.0275b -2.6831 X losdb 0.81813' 

K -0,1753' 0.8227' -6.1976 X lo-" 0.64678" 
-0.1714b 0.862gb -10.4020 X IO-*b 0.69046b 

Rb -0.1654' 0.8059" -5.4211 X 10.'" 0.63995' 
-O,165Zh 0.8056b -8.0170 X 0.63959b 

Cs -0.15211 0.8959a -5.4512 X 0.73835' 
-0.1494b 0.9117b -4.0713 X 0.75822' 

Zn -0.2094' 1.3568* -O.586Za ~0.5612. 

Cd -0.3268' 1.40908 -0.6716' 0.4106" 

Our calculations with Animalu and Heine Datameters as tabulated bv Hay- 
rison (1966). 

Our calculations mith Woo era1 (1975) parameters 

Heine as tabulated by Harrison (1966) for metals and also of Woo et a/ (1975) for alkali 
metals. 

In order to  calculate D:, D ;  and D:O, we need to know the chemical potential 5 ,  
It has been shown earlier that is related to E,), the chemical potential for free electrons, 
through a transcendental equation (equation (3.18)), which contains the pseudo- 
potential matrix elements and hence depends on G. We have calculated 5 for each value 
of G by a reiteration process. Finally we have calculated D s ,  D& and Dso by using 
standard procedures of numerical integration. In our calculations we have used values 
of G with 0 < /G/2k,l < 4 to ensure distinct convergence. The values of spin-orbit 
parameters used inour calculations have been taken from the workof Misra elal(1986) 
and Misra (1987) on Knight shift. 

For the divalent HCP metals Zn and Cd. we have evaluated DZll. D&li and D&I for 
magnetic field parallel to the -7 direction (i.e. parallel to the hexagonal axis) using 
G: + G: for G:, which is then summed over G to obtain xb, x\ and xk0, The values of 
D g l ,  D%l and 082 (for magnetic field perpendicular to the hexagonal axis) have been 
calculated in a similar manner using the values of G; + GI or G: + G: for G: and then 
summedover G. Finally, the average susceptibility has beencalculated using the relation 

(4.6) x = d(xll + 2x1). 
Detailsof thesecalculationsare availablein oneof our earlier papers (Daseta/1988) 

for Zn and Cd. Finally, we tabulate our results in table 1 for alkali metals as well as Zn 
and Cd. In table 2 we compare our results with the indirectly obtained experimental 
results (in the absence of direct experimental data) for HCP metals, with the available 
experimental results for alkali metals and with the results of the spin-density functional 
(SDF) formalism. We note that our results agree well with the experimental results. The 
results of SDF theory xS/xp (the Susceptibility enhancement) also agree equally well. Our 
resultsfor the spin-orbit contributions (xso) show that these are very small (of the order 
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Table 2. Computed electronic contribution to x mmpared with expecimental value xE = 
xi - X, (in 

Experimental results Present calculation 

cgs voI units). 

Total Ionic Electronic Theor. Expt. 
Metal xT XI XE = XT - XI X = XO * X5 XSO XS/XF XSl 'Xp XSIXP 

Li 1.789' -0.053' 1.842' 1.882 59" 

Na 0.583e -0.291' 0.874' 0.828 91' 
0.818 13b 

K 0.389' -0.372' 0.761' 0.646 78< 
0.690 46b 

Rb 0.31W -0.39% 0.70% 0.639 95= 
0.639 59h 

cs 0.398' -0.487' 0.885' 0.738 35" 
0.758 22b 

Zn -1.14d -1.64d 0.50 0.5612* 

Cd -2.309' -2.593e 0.284 0.4106a 

2.5101' 2.66' 
2.57' 
2 . w  

1.572Y 1.62k 
1.S588b 1.63' 

1.58' 

1.5439" 1.79L 
1.6194b 1.79' 

1.70' 

1.6174' 1.78' 
1.616Sh 1.75' 

1.73" 

1.9458= 2 20h 
1.97Wb 2.10' 

1.91m 

1.2076" 1.18" 

1.4063' 1.18" 

2.50 t 0.05' 
2.64 t 0.13s 
2.84 t 0.1Oh 

1.65 * 0.05' 
1.58 t 0.09' 
1.72 2 0.W8' 

1.69 t 0.07' 
1.701 * o.oo8i 

1.59 2 0.12' 
1.724 t O.OO@ 

1.76 t O.O@ 
or 
2.24 t 0.0@ 

Our results with Animalu-Heme parameters (Harrison 1966). 

Experimental resultsoiCollings (1965). 
Experimental resultsof Marcus (1949) 

e Experimental resultsof Knight (1956). 
I Kushida el a/ (1979). 

Kertleretal(1969). 
Flesner and Schultz (1976). 

' Whiting el a/ (1978). 
J Knecht (1975). ' VoskoandPerdew(l975). 
' Voskoeralf1975). 

'Our results with Woo et al(1975) parameters. 

MacDonald and Vosko (1976). MacDonalderol(l5'76). 
" Janak (1977). 

of to for alkali metals but are comparable in magnitude with the orbital 
susceptibility (,yo), and are important for metals with complicated crystal structures, 
particularly HCP metals like Zn and Cd, as predicted (Misra and Kleinman 1972). This 
is because of the fact that the splitting of the electronic levels on the hexagonal faces of 
the first zone in HCP metals is entirely due to spin-orbit coupling. Since the strength of 
the spin-orbit coupling increases with atomic number, this splitting is appreciable in the 
heavy hexagonal metals (Ashcroft and Mermin 1976p 169). It is to be noted that no such 
specific calculation has been made before for the spin-orbit contribution in the SDF 
formalism except for including the spin-orbit effects in the calculation of xs. 
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5. Results and discussion 

The principal result of this paper is the derivation of tractable expressions for the orbital 
ko). spin kS) and spin-orbit (xso) contributions to the magnetic susceptibility of 
electrons in metals through the use of a pseudopotential formalism and degenerate 
perturbation theory. We have included the effects of the lattice potential, electron- 
electron interaction and spin-rbit interaction. It has been shown that the earlier well 
known results are obtained as limiting cases of our  results. 

The necessity for using degenerate perturbation theory in our calculation is in 
contrast to  the case of total energy as calculated by Harrison (1966), who found that 
second-order perturbation theory sufficed. This is because we are dealing essentially 
with energy derivatives, so that the second-order perturbation theory result diverges 
rather strongly (Misra and Roth 1969) and overestimates the departure from free- 
electron behaviour. 

As an example of our theory, we have calculated the various components of sus- 
ceptibilityfor alkalimetalsas well astwodivalent ~ C ~ m e t a l s ,  ZnandCd. It isgratifying 
to note that our results agree well with the experimental results. It may be noted that 
our expressions for various components of x are quite general and applicable to metals 
with complicated crystal structure. 

We note that, in the absence of direct experimental data for either the diamagnetic 
or the spin susceptibility of Zn and Cd in the literature, it has been the usual practice to 
calculate the value of the electronic contribution to the susceptibility by the relation 
xE = xT -xi, where xE, xT and xi represent the electronic contribution, the bulk sus- 
ceptibility and the ionic susceptibility. In table 2 we have compared our results for 
magnetic susceptibility with xE. It may be noted that our results for alkali metals as 
well as Zn and Cd agree fairly well with the indirectly obtained experimental results. 
The discrepancy in the experimental and theoretical results can be attributed to an 
uncertainty in the subtraction ofxi to obtain xE. In table 2 we also compare the value of 
Xs/xPobtained by us with the results obtained by the spin-density functional formalism. 

We further note that our results agree with earlier well known results in suitable 
limits. However, there is no easy way to compare our theory with the spin-density 
functional theory. Although spin-orbit effects have been included in the expression for 
xs in the SDF theory, the spin-orbit contribution to the electronic susceptibility ks0), 
which becomesimportant for metalslikezn andCd, hasnot yet beenexplicitlyobtained 
using SDF theory. 

Finally, we note that we have derived the expressions for xo. xs and xso at zero 
temperature, but it is a simple task to extend our formalism to finite temperatures by 
modifying our integration over the Fermi surface as well as by explicitly considering the 
temperature dependence of the pseudopotential. 
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