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Received 5 January 1990, in finat form 30 October 1990

Abstract. We derive expressions for the orbital (xp). spin (ys) and spin-orbit (¥se) con-
tributions to the total magnetic susceptibility (x) of electrons in metals, which includes the
effects of lattice potential and exchange—correlation, by using a pseudopotential formalism
and degenerate perturbation theory. We have calculated ¥ for alkali metals as well as for Zn
and Cd. Our results agree well with the experimental results. The effects of spin—orbit
interaction on the magnetic susceptibility have been investigated. The spin-orbit con-
tribution to ¥ has been found to be very small for alkali metals but gives a significant
diamagnetic contribution in the case of Zn and Cd, as predicted earlier,

1. Introduction

The many-body theory of magnetic susceptibility of solids, in which the effects of the
lattice potential, electron—-electron interactions and electron—phonon interactions are
included, is one of the basic problems of solid-state physics that has not yet been
satisfactorily resolved. Although the many-body effects on the orbital susceptibility (xo)
of metals is negligible (Phillipas and McClure 1972), it is well known that the spin
susceptibility (xs) of metals is very sensitive to exchange—correlation (xC) effects and
theinfluence of electron—phononinteractions on ysis small. Further, ithad been hitherto
assumed that the effects of spin—orbit coupling can be accounted for in the diamagnetic
susceptibility (o) through modification of the Bloch functions and in the spin sus-
ceptibility (ys) by replacing the free-electron g-factor by the effective g-factor. However,
it has been shown (Misra and Kleinman 1972) that there is an additional contribution to
the magnetic susceptibility from the effects of spin—orbit coupling (x50} on the orbital
motion of Bloch electrons, whose contribution is of the same order of magnitude as yq
for metals like Zn and Cd and some semiconductors (Misra e a/ 1984) even in the
absence of x¢ effects.

The comparison of suitable theoretical results with accurate measurements (Knecht
1975) of x; of alkali metals using the de Haas—van Alphen effect allows for a stringent
test of the role of electron—electron interactions in the properties of metals. In order to
explain these measurements, any theory of ys must simultaneously incorporate the
lattice potential and the xc effects including the core electrons. However, owing to the
enormous complexity of the problem, until recently there have been two different
approaches in deriving an expression for ys. In one method, the Bloch picture of the
electron is adopted in which the electron—¢lectron interaction terms are not considered
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insofar as they can be approximated to a one-electron band calculation. In the alternative
method the many-body effects on ys of an electron gas are first derived and the yg of
electrons in solids is calculated essentially using an effective-mass model. Further, in
deriving 2 many-body theory of x5, the orbital component of the Hamiltonian is not
usually included, thereby neglecting the effects of spin—orbit interaction. The spin—orbit
interaction is subsequently introduced in an ad hoc manner by replacing the g-factor by
the effective g-factor.

An expression for ys using the Bloch picture of electrons was first derived by Abe
(1963) in a nearly free-electron approximation. However, his results for yg did not
include the important contribution due to exchange enhancement. Moreover, its appli-
cation is limited only to monovalent metals, since his expression for ys diverges when
the Fermi surface touches the Brillouin zone boundary. Sampson and Seitz (1940) first
calculated ys including x¢ effects by assuming that the shift in the ground-state energy
from polarization can be obtained from an independent variation of the populations of
the up and down spins. Pines and Nozieres (1966) carried out a calculation similar to
that of Sampson and Seitz (1940) but their results differ considerably from the results of
Sampson and Seitz because of the use of Bohm-Pines theory for the correlation energy.
Brueckner and Sawada {1958) have derived an expression for yg of an electron gas at
high density using the exact theory of Gell-Mann and Brueckner (1957). Silverstein
(1963) calculated yg by a method similar to that of Brueckner and Sawada (1958)
with the addition of a momentum-transfer interpolation procedure designed to obtain
relevant information in the region of metallic densities. In this procedure, the band
effects can be taken into account by the introduction of the effective massinto the kinetic
energy term. There have been several attempts (Lobo ef al 1969, Singwi er al 1970, Singh
and Pathak 1972. Hasegawa and Shimuzu 1973, Rajagopal et al 1973) to calculate the
frequency- and wavevector-dependent spin-density response function, which in the
static and long-wavelength limit gives the usual static spin susceptibility. These theories
are mostly based on the generalized random-phase approximation and are direct gen-
eralizations of theories of the dielectric function. Vashistha and Singwi (1973) have
generalized their theory of the dielectric function to include spin fluctuations by treating
the electron liquid as a two-component system. Hamann and Overhauser (1966) have
calculated the wavevector-dependent spin susceptibility, taking the dynamically
screened electron interaction into account. Kasowski (1969) has estimated the tem-
perature-dependent spin susceptibility in a pseudopotential formalism. Dupree and
Geldart (1971) have evaluated the spin susceptibility by expanding the propagators in
the expression for the dynamic spin susceptibility of an interacting electron gas in
terms of the one-electron self-energies and propagators for non-interacting electrons.
Pizzimenti et af (1971) have calculated the spin susceptibility of metals in the framework
of the Landau (1956) theory on the basis of the treatment of electron correlation
developed by Singwi et af (1970).

Yafet (1973) has calculated the spin susceptibility for a two-band model with 8-
function interactions between conduction electrons using a random-phase approxi-
mation. Isthara and Kojima (1975) have evaluated both the orbital and spin sus-
ceptibilities of an electron fluid by considering the free electrons, first- and second-order
exchange and ring diagrams. It may be noted that most of these theories have considered
the metal as a homogeneous electron gas, which represents only a mathematical
model. In a real metal the background potential and the electron density are far from
uniform. Kohn and Sham (1965) have used the density-functional formalism (Hohen-
berg and Kohn 1964) to derive an expression for the spin susceptibility valid for slowly
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varying density. They have used the fact that al ground-state properties are functionals
of the electron density. The Hohenberg-Kohn-Sham theory of an inhomogeneous
electron gas has been generalized (Stoddart and March 1971, Von Barth and Hedin
1972, Rajagopal and Callaway 1973) to include the spin-dependent interaction. Vosko
and Perdew (1975) have derived a theory of ys of metallic electrons based on the
variational principle within the density-functional formalism. The variational expression
allows one to treat simultaneously the band and exchange—correlation effects among the
conduction electrons and also includes the effect of the core electrons on the lattice.
Using this theory, Vosko et af (1975) have calculated y; for alkali metals, and there is
good agreement with the experimental results. Using the Vosko-Perdew theory, Janak
{1977) calculated x5 of a number of metals (including the transition metals) to study the
enhancement of response that leads to ferromagnetic instability. His results agree with
results of Gunnarson {1976) but differ from those of Vosko et af (1975) because of the
use of a different approximation for the exchange—correlation functional and the use of
different lattice parameters. It may be noted that the results of these calculations are
sensitive to the approximation for the exchange—correlation functional. Moreover, since
only the spin part of the Hamiltonian is considered, the spin—orbit contributions are
completely ignored in these theories.

Misra and Kleinman (1971, 1972) have derived an expression for the magnetic
susceptibility of Bloch electrons, which can be written in the form

X=xo+xs+ Xso (1.1)

where yq is the expression for diamagnetic susceptibility derived by Misra and Roth
{1969) by considering the orbital motion of Bloch electrons, ¥ is the effective Pauli spin
susceptibility, which i{s obtained by replacing the free-electron g-factor in the spin
susceptibility by the effective g-factor (Yafet 1973), and ysq is the additional contribution
of the spin—orbit interaction to the susceptibility. However, they have adopted the
Bloch picture of electrons in solids and thus have not considered the electron—electron
interaction terms except insofar as they can be approximated in a one-band calculation.
It has been observed by Misra and Kleinman that, although the additional spin-orbit
contribution to the susceptibility may contain contributions of either sign, it should be
considered a spin—orbit correction to yo and distinguished from the spin—orbit con-
tribution to the eifective g-factor. This is because of the fact that there are two types of
contribution to the magnetic energy of a one-glectron eigenstate, terms linear in B (the
applied magnetic field) that split the spin degeneracy and terms quadratic in B that do
not. (Both terms, of course, contribute quadratically to the free energy.) The linear
terms are all included in the g-factor and are always paramagnetic, independent of the
sign of the g-factor, i.e. independent of the sign of the splitting of the spin degeneracy.
The quadratic terms that arise from a perturbation of the electron wavefunctions by the
magnetic field are generally diamagnetic and are responsible for both x5 and ygo.

Recently one of us has formulated a theory (Misra er af 1982) of the total magnetic
susceptibility of solids in which the effects of both lattice potential and electron—electron
interactions have been included. We have constructed in k-space, using the Bloch
representation, the effective one-particle Hamiltonian and equation of motion of the
Green function in the presence of a magnetic field. We have used a finite-temperature
Green function formulation where the thermodynamic potential Q is expressed in terms
of the exact one-particle propagator G. We have derived general expressions for the
orbital (o), spin (¥s) and spin-orbit (yso) contributions to the total magnetic sus-
ceptibility x, which includes many-body effects.
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In this paper, we derive tractable expressions for xo, x5 (including spin—orbit inter-
actions) and yo of metals from the general results of Misra et af {1982) through the use
of a pseudopotential formalism (Harrison 1966) and doubly degenerate perturbation
theory. The justification for the use of the pseudopotential formalism has been given by
Misra and Roth (1969} and Phillipas and McClure (1972).

The organization of the paper is as follows. In section 2, we briefly discuss the general
expressions for yq, 5 and ¥so derived by Misra e af {1982). In section 3, we formulate
a pseudopotential theory appropriate for metals to obtain tractable expressions for xq,
xs and ysg such that calculations can be easily made. In section 4 we calculate yq, x5 and
Xso of the alkali metals and the divalent HCP metals, Zn and Cd. Finally we compare our
results with experimental resuits as well as the results of the spin-density functiona}
formalism.

2. General expressions for Xq, s and yso

Misra et al (1982) have derived an expression for the total magnetic susceptibility () of
interacting electrons in solids using a finite-temperature Green function formalism
where the thermodynamic potential for an interacting electron system in the presence
of a periodic potential, spin—orbit interaction and external magnetic field is expressed
in terms of an exact one-particle propagator G. We have constructed in k-space, using
the Bloch representation, the equation of motion of the Green function in the presence
of the magnetic field and evaluated y. In this theory y has been separated into three
components:

X=Xo+ Xs+ ¥so (2.1)

where y, is the orbital susceptibility, ygis the spin susceptibility and ygq is the additional
contribution due to spin—orbit interaction. The expressions for ¥o. xs and xso (equations
(3.42), (3.46) and (3.44) of Misra er af (1982)) are
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Here the g-matrix g2, (k) and the other factors have been defined as follows:
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Z is the exact self-energy operator whose matrix elements are

Enkp.mkp' (ka B, El) = Idr dr’ w:kp(r)z(r’ !”,B, g!)u’mkp'(r’)
and the field-dependent self-energy has been expanded as

(k. B, &) =5k, &) + BHE V¢ (k,E) + B*B M4 (k. 5))

where &, is the complex energy given by
E =2+ Vyxi/p + u.
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2.3)

2.4)

(2.5)

(2.6)
(2.7)
(2.8)
2.9)

(2.10)

(2.11)

(2.12)

(2.13)

Also, here oisthe Pauli spin matrix; u, is the Bohr magneton; u is the chemical potential,;
g is the free-eleciron g-factor; A,,,, is the matrix clement of A between 1,,,(r) and
Wt (r'), the two-component Bloch functions, which are eigenfunctions of the Ham-
iltonian in the absence of a magnetic field; n is the band index; % is the reduced
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wavevector; p isthe spinindex; E,,, = E,, — E,; €45, 15 the antisymmaetric tensor of third
rank; and f(E,) is the Fermi function. Expanding G(k, E;), using equation (2.12) and
making an average exchange enhancement ansarz we obtain

Elr’]pnp = {an(k)/zll -, (k)]}uﬂgﬁnaﬁpnp' (214)
where

o, (k) = — ;Z VK, KV (Em(k")) (2.15)

and v, (k, k') is the matrix element of the effective electron-electron potential in the
static screening approximation. Substituting equation (2.14) inequation (2.3), we obtain

o = kas.,,(k)/u — @, (k)] (2.16)
where
1851 (0) = = 4} 2 810 (D)0l 81 ()0 (E). (2.17)
1)

Further, using equations (2.14) and (2.15) in equation (2.4) the expression for x50 can
be simplified and we cobtain
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We note that the intuitive result of equation (2.16), which gives rise to the well known
Stoner enhancement (White 1970), is essentially equivalent to the usual expression for
the exchange-enhanced spin susceptibility but with the free-electron g-factor replaced
by the effective g-matrix. We further note that in the above derivation the coupling
between Efk. . for different occupied bands has been neglected.

3. Pseudopotential formulation

In order to calculate ¥, ¥s and ygo for metals, we evaluate the Bloch functions by
considering the sum of the lattice potential and the field-independent part of the self-
energy as non-local psendopotential. The justification of the pseudopotential for-
mulation has been given by Misra and Roth (1969) and Phillipas and McClure (1972).
We retain the operator nature of W(r), which does not cause any difficulty since we shall
be interested in the matrix elements between states that lie on the Fermi surface.
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We consider the case of a general point on the Bragg reflection plane, so that the
unperturbed eigenvalue is doubly degenerate if we ignore spin. With the inclusion of
spin, each level becomes doubly degenerate, so that we consider two doubly degenerate
bands at a general point of the Bragg reflection plane. We write the Hamiltonian as

H=p*2m+ W+ Wy 3.1

where we have separated the general pseudopotential (Das and Misra 1971) into two
parts: W, the spin-independent part, which is the pseudopotential used by Misra and
Roth (1969), and Wp, the pseudopotential for spin—orbit interaction. Using standard
techniques of degenerate perturbation theory, we obtain the energy values as

Ei =¥z, +&)— e — )X X,

(3.2)
E;=H(g, + &) + Hex — )X\ X,
and the eigenfunctions as
lp1) =aly_a)— b*Q. |y, &) — b*Q . [y, B
|91,y =aly_p)— b*Q.|y.a) — bQ.|v. B 33
lw2r) = aly, o)+ 6Q.|w_ad + Q. |w_p '
[y ) =aly, By + b0 _ly_a)+b*Q.|y_B)
where
B V2ZWg k) 14+ X\
¥ = (25 — €)X, (1+X,)]'7 ( 2X, ) e+ G)
{1+ XN V2ZWslk +G)
v- _( ZX; ) [ (g2 — e)[X (1 + X))
£, = kK2 /2m g, = B2k + G)*/2m We =&+ G|w|k)
_ 4|WG12 1/2 3 4ﬁ2D2IQ]2 1/2
X, = (1 + -"-"—(62 - 51)2) X, = (1 + m——2(£2 — El)zXf) (3.4)
{1+ X\ B iVZ#D/m _
= (5% P aar i 8TEXC

D = (3/4mc?)U(|G)S(G) ~ Ao (m/B)S(G) — Aa(m/m)S(G)K? + k - G).

Here S(G) is the structure factor, and the spin-orbit parameters A, and 1,4 are positive
constants that account for the contribution of the core p states and d states respectively.

The matrix elements of ;. and &,,,, have been evaluated by using Bloch
functions obtained by us. However, in order to calculate yo, x5 and xso, we have to
calculate the chemical potential and the exchange cnhancement factor in the pseudo-
potential formulation. We start with the familiar expression

4ﬂ%fcﬂkf(E) =N (3.5)

where E is the exact energy given in equation (3.2), f(E) is the Fermi function and N is
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the total number of electrons per unit volume. We use cylindrical coordinates to evaluate
equation (3.5). We choose G parallel to the z axis inside the integration and we can write

A2G 4m’|Wg|” 4D? \7
2m (‘#’ BGE R k*z’) (3.6)

ﬁ2
Ei=—(ki+qi+GHa) =
5 Zm( P

where

ki=ki+ Kkl and g, =k, + G/2.
Integrating by parts and using the fact that at zero temperature the derivative of the
Fermi function, f'(E) = — 8(E — ), we obtain

1 ,,
e J' dg, J KIS(E - §)dE = N (3.7)

where £ is the chemical potential. The integration over E causes k7 to be replaced by
2 =—q?+ 8G* + (p - 1)G¥/4 + G(ag? + BGH)\? (3.8)
which is obtained by solving £ — & = 0. We obtain from equations (3.7) and (3.8)

1
4

J’dqz[—qf; +8G?+(p—1)G/4+ G(&q? 4 BGH) 7] = N.  (3.9)

In the above, the dimensionless quantities «, 8, 8, £ and p are defined by
8 =2D?/* a=1-26 f=0r+8+(p-1)/2

© =dm*Wi/hG? and p=8mE/R G (3-10)
Introducing the dimensionless variabie
y=(2/G)q. (3.11)
we can write equation (3.9) as
G orra
Tz drl-7 +p+dd—142ayt +46)?]=N, (3.12)
¥-

Here y, and y. are the upper and lower limits of y obtained by solving E = £ for
&, = 0. The solutions can be shown to be

2[(p + 4I2)l,12 _plfz] 12
ve = (1= p?) (1 + = p) ) . {3.13)
We now integrate equation (3.12) to obtain (for bothp > land p < 1)
GS
(302 )+ (p 26 - 1. - v0)
48 lz, —28+ o'y,
+(ysz, —y-z-)+a—!ﬂ‘ln 2 =25+ aPy. )=N (3.14)

where



Total magnetic susceptibility of interacting electrons in metals 1315

Z: = 7= (1+ 42 /p2 2, (3.15)
It is easy to show the free-electron result that

N=#G?/32a%)p}" (3.16)
where

po = 8m&,/h*G? (3.17)

and &, is the Fermi energy. We obtain from equations (3.14) and (3.16)

3
po=[3(-102 =)+ 28 - 0. - 7)

48 z,—28+a'y, })]2/3

Wln z_—28+aPy_ (3.18)

+(yeze ~|y-lzo) +

We note that in the absence of spin—orbit interaction, our expression for p, in equation
(3.18) reduces to the corresponding expression derived by Misra et af (1971). We can
write the right-hand side of equation (3.18) as F(p) and write it in the form

p=po— [F(p) - pl (3.19)

Thus we can calculate p by a reiteration process and hence the chemical potential € can
be evaluated.

To calculate yq. ¥s and yso. we have first evaluated the matrix elements of 7%, 7,
7%, 0%, 0¥ and o° between the Bloch functions v, ¢, ¥, %2 and ., . We have used
cylindrical coordinates and integrated the resulting expression by using the technigues
outlined earlier for the evaluation of the chemical potential. After considerable algebra,
we finaily obtain

%o =1 (1+ ) (3.20)
G
Xs=xi + %D% @321
and
xso = 2 D (3.22)
[N

In the above x{ is the free-electron Landau diamagnetic susceptibility, x7 is the
exchange-enhanced spin susceptibility for free electrons (i.e. in the absence of band
effects), and D2, DE and D° are G-dependent terms in ., ¥s and xso that account for
the band effects and spin-orbit coupling. D, D% and D are given by

7 1 12G32 /1 K2 it
Q= _ L L 3 o . N _
Pe fr_ dr 7|1 - G (5 Gzywcw)]k%:j% 1~ 4V/No - 1)

(3.23)
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~2G N i 3 ag mDWgGE
S0 2 2 =z
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D (G -G, -5
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where
Y =y2+ 487 + (16D Gk} (3.26)
% is the vaiue of k7 obtained by solving the equation E, ~ £ =0, i.e.
fE=1G?(p ~ 1) — ¥ + 48 + 2ay? + 4B)'2] (3.27)

and « is the exchange enhancement factor obtained by one of us (Misra and Misra
1982).

We note that in deriving the expression for D@, we have not considered the many-
body effects on the orbital susceptibility, as has been shown by Phillipas and McClure
(1972) and Misra et al (1982) that such effects on yp are very small for metals. We further
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note thatif spin—orbit interactionis also neglected, then our expression for D (equation
(3.23)) exactly reduces to the corresponding expression obtained by Mista et af (1971).
The last term in equation (3.23) is a correction term due to the inclusion of many Bragg

reflections.
It is easy to see that in the absence of many-body effects (&g = () and spin—orbit

effects (D = 0), our expression for ys reduces to
1
Xs = Xp (1 +EE(Y+ - y-)G - 1) (3.28)
PG

where yp is the Pauli susceptibility of free electrons.

If we substitute the values of ¥, and y_ from equation (3.13), and expand the terms
to second order in W, which is equivalent to non-degenerate perturbation theory, we
obtain

W2
xs = XP [1 - 2% (plfz tanh"'] pl,”2 — I__Pi_p)]- (3.29)
. G

We note that Abe (1963) and Glasser (1964) have derived exactly the same expression
for the paramagnetic susceptibility in the nearly free-electron approximation. Thus,
their result for x5 is equivalent to our result using non-degenerate perturbation theory
and neglecting both spin—orbit and exchange—correlation effects. However, it should be
noted that the use of non-degenerate perturbation theory does not yield correct results
for the magnetic susceptibility even for simple metals like lithium (Misra and Roth 1969).

4. Method of calculation
The alkali metals crystallize in the BCC structure with two atoms per cubic unit cell. The
reciprocal lattice vector G and the structure factor for a Bcc lattice are given by

G = 2x/a)[(h + Di + (h + k)] + (k + DE) (4.1)
and

S(G) = ¥(1 + e iw/2h-k+D) (4.2)

where £, f and k are unit vectors along x, y and z directions, respectively.
Zn and Cd are divalent HCP metals with the lattice described by a unit cell having
edges
a, = tai — V3aqf a = tai + 3V3af ay = ck. (4.3)

The unit cell contains two atoms, one at the origin and the other at $af + V'3 af + #ck.
The reciprocal lattice vector G and the structure factor S(G) are given by

G = (2x/a)[(h + k)i + ¥V3(k — h)] + (a/c)ik] (4.4)
S(G) = cosfin(2h + 4k + 31)]. (4.5)

Making use of the lattice parameters, we have calculated the lattice vectors G and
the structure factor S(G) for each G by a computer program. We have used the zero-
temperature Fermi-level pseudopotential form factors {(k; + G|w|&;} of Animalu and
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Table 1. Orbital (o), spin (xs) and spin-orbit (¥se) contributions to magnetic susceptibility
{x) (in 107 cgs vol units).

Metal Xo As Xso X=Xot Xst xso
Li -0.1023*  1.9849*  —3.5454 x 10~ 1.88259°
Na —-0.2072"  1.0364*  —2.8634 x 10~ 0.82891*
-0.2091%  1.0275° —2.6831 x 10~'® 0.81813b
K -0.1753* 0.8227* -6.1976 x 10~ 0.64678°
-0.1714®  0.8620%  —10.4020G x 10-**  0.69046%
Rb =(.1654* 0.8059¢ —5.4211 x 107 0.63995°
—0,1652"  0.8056"° -8.0170 X 107*F 0.63959t
Cs -0.1521° 0.8559¢ —5,4512 % 1073 0.73835*
—0.1494* 09117 —4.0713 % 107% 0.75822°
Zn =0,2004* 13568  —0.5802° 0.36]2¢
Cd ~0.3268° 140000 -0.671¢° 0.4106*

# Qur calculations with Anitmalu and Heine parameters as tabulated by Har-
rison (1966).
® Qur calculations with Woo er al (1975) parameters.

Heine as tabulated by Harrison (1966) for metals and also of Woo et al (1975) for alkali
metals,

In order to calculate D2, D and D3P, we need to know the chemical potential &.
1t has been shown earlier that & is related to &, the chemical potential for free electrons,
through a transcendental equation (equation (3.18}), which contains the pseudo-
potential matrix elements and hence depends on G. We have calculated £ for each value
of G by a reiteration process. Finally we have calculated DY, D} and D by using
standard procedures of numerical integration. In our calculations we have used values
of G with 0 <{G/2k¢| < 4 to ensure distinct convergence. The values of spin-orbit
parameters used in our calculations have been taken from the work of Misra er al (1986)
and Misra (1987) on Knight shift.

For the divalent HCP metals Zn and Cd. we have evaluated D, D, and D for
magnetic field parallel to the z direction (i.e. parallel to the hexagonal axis) using
G? + G2 for G, which is then summed over G to obtain y}, & and yo. The values of
D2, , DY, and DS, (for magnetic field perpendicular to the hexagonal axis) have been
calculated in a similar manner using the values of G5 + G} or G; + G} for G and then
summed over G. Finally, the average susceptibility has been calculated using the relation

x =30+ 2x.) (4.6)

Details of these calculations are available in one of our earlier papers (Das et af 1988)
for Zn and Cd. Finally, we tabulate our results in table 1 for alkali metais as well as Zn
and Cd. In table 2 we compare our results with the indirectly obtained experimental
results {in the absence of direct experimental data) for HCP metals, with the available
experimental results for alkali metals and with the results of the spin-density functional
(spr) formalism. We note that our resulis agree well with the experimental results. The
results of SDF theory ys/xp (the susceptibility enhancement) also agree equally well. Qur
results for the spin—orbit contributions (yso) show that these are very small (of the order
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Table 2. Computed electronic contribution to ¥ compared with experimental value yg =
xv — %i (in 107 cgs vol units).

Experimental resuits Present calculation
Total Ionic  Electronic Theor.  Expt,
Metal g % Xe=Xr=X  X=XotistXso Xs/¥e  xs/xe  Xs/he
Li 1.789° —~0.053° 1.842° 1.882 59° 2.5101  2.66F 2.50 = 0.05°
2.57 2.64 +0.138
2.8 2.84 0,100
Na 0.58%F -0.291° 0.874 0.828 91° 1.5725* 1.62¢ 1.65 = 0.05¢
0.818 13* 1.5588° 1.63 1.58 = 0.09
1.58™ 1.72 = 0.008
K 0389  -0.372 0.761° 0.646 78 1.5439° 1.7 1.69 = (.07
0.690 46° 1.6194° 1.7¢ 1.701 < 0.008/
1.70™
Rb 0.310¢ -0.398  0.708° .639 95° iel7¢ 1,78 1.59 = 0.12
0.630 59° 1.6168" 1,79 1.724 + 0.00¢
1.73"
Cs 0.398° -=0.487 0.885 0.738 35* 1.9458° 220+ 1.76 £ 0.06
0.758 22° 1.9799° 210! or
1.91m 224 £0.06
Zn ~1.14¢ -1.644 0,50 0.3612% 1.2076* 118"
Cd -2.309¢  -2.393 0,284 0.4106" 1.406% 118"

* Our results with Animalu-Heine parameters (Harrison 1966).
® Qur resuits with Waoo ef al {1975) parameters.

¢ Experimental results of Collings (1965).

4 Experimental results of Marcus {1949)

¢ Experimental results of Knight {1936).

" Kushida er af (1979).

¢ Kertler eral (1969).

" Flesner and Schultz (1976).

' Whiting ef af (1978).

! Knecht (1975).

¥ Vosko and Perdew (1975).

! Voska eral (1975).

™ MacDonald and Vosko (1976). MacDonald et @/ (1976).
" Janak (1977).

of 1077 to 107'?) for alkali metals but are comparable in magnitude with the orbital
susceptibility (¥g), and are important for metals with complicated crystal structures,
particularly HCP metals like Zn and Cd, as predicted (Misra and Kleinman 1972). This
is because of the fact that the splitting of the electronic levels on the hexagonal faces of
the first zone in HCP metals is entirely due to spin—-orbit coupling. Since the strength of
the spin—orbit coupling increases with atomic number, this splitting is appreciable in the
heavy hexagonal metals (Ashcroft and Mermin 1976 p 169). It is to be noted that nosuch
specific calculation has been made before for the spin-orbit contribution in the spF
formalism except for including the spin—orbit effects in the calculation of ¥.
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5. Results and discassion

The principal result of this paper is the derivation of tractable expressions for the orbital
(¥o). spin {xs) and spin-orbit (xs0) contributions to the magnetic susceptibility of
electrons in metals through the use of a pseudopotential formalism and degenerate
perturbation theory. We have included the effects of the lattice potential, electron-
electron interaction and spin—orbit interaction. It has been shown that the earlier well
known resuits are obtained as limiting cases of our results.

The necessity for using degenerate perturbation theory in our calculation is in
contrast to the case of total energy as calculated by Harrison (1966), who found that
second-order perturbation theory sufficed. This is because we are dealing essentially
with energy derivatives, so that the second-order perturbation theory result diverges
rather strongly (Misra and Roth 1969) and overestimates the departure from free-
electron behaviour.

As an example of our theory, we have calculated the various components of sus-
ceptibility for alkali metals as well as two divalent HCP metals, Zn and Cd. It is gratifying
to note that our results agree well with the experimental results. It may be noted that
our ¢xpressions for various components of  are quite general and applicable to metals
with complicated crystal structure.

We note that, in the absence of direct experimental data for etther the diamagnetic
or the spin susceptibility of Zn and Cd in the literature, it has been the usual practice to
calculate the value of the electronic contribution to the susceptibility by the relation
XE = X1 — Xi» Where xg, x7 and x; represent the electronic contribution, the bulk sus-
ceptibility and the ionic susceptibility. In table 2 we have compared our results for
magnetic susceptibility y with yg. It may be noted that our results for alkali metals as
well as Zn and Cd agree fairly well with the indirectly obtained experimental results.
The discrepancy in the experimental and theoretical results can be attributed to an
uncertainty in the subtraction of ¥; to obtain yg. In table 2 we also compare the value of
¥s/xp Obtained by us with the results obtained by the spin-density functional formalism.

We further note that our results agree with earlier well known results in suitable
limits. However, there is no easy way to compare our theory with the spin-density
functional theory. Although spin—-orbit effects have been included in the expression for
¥s in the SDF theory, the spin-orbit contribution to the electronic susceptibility (xgq),
which becomes important for metals like Zn and Cd, has not yet been explicitly obtained
using SDF theory.

Finally, we note that we have derived the expressions for yq. x5 and yso at zero
temperature, but it is a simple task to extend our formalism to finite temperatures by
modifying our integration over the Fermi surface as well as by explicitly considering the
temperature dependence of the pseudopotential.
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